

SolidSense MQTT Gateway

MQTT interface definition

Version 2.0

DRAFT

Scope of the document

The document defines the MQTT interface for the SolidSense MQTT gateway. This software replaces the
former BLE MQTT gateway including all the existing features from it.

The document does not include the Bluetooth standard and is assumed to be known by the reader.

The version 2.0 includes the possibility to also manage the GPS with the MQTT interface as well as the
possibility to interface vehicle On Board Diagnostic service.

1. General structure of the MQTT interface

Identifiers

The BLE devices (tags/sensors/beacons/….) are uniquely identified by their MAC address in the form of 5
pairs of hexadecimal digits separated by colon.
 Ex: 22:54:EF:6D:0C

BLE services and characteristics UUID are represented by their canonical hexadecimal strings.

By defaults the gateway ID is its hostname (serial number)

Dynamically typed values on Bluetooth

The gateway is translating basic types from and into their Bluetooth transport representation. Here is the
enumeration defining the types on the interface

Keyword Numeric value Associated type

BTRAW 0 Hexadecimal string representing binary values. Little endian on
16 bits words assumed. Length shall always be even.

INT 1 Integer, can be signed

FLOAT 2 Float, can be signed

STRING 3 UTF 8 string assumed

UUID 4 Bluetooth UUID as Hexadecimal string following the standard

BYTES 5 Binary data in hexadecimal string. This is not strictly equivalent to
BTRAW as byte ordering can change

High level topics summary and MQTT structure

Topic name Publish Subscribe Purpose

solidsense N Y Global status and control of the MQTT gateway

solidsense_resp Y N

scan N Y Control the gateway BLE scanner

filter N Y Control the BLE scan filters

scan_result Y N Send back BLE scanner status

advertisement Y N Send advertisement from a BLE device

gatt N Y Top level topic for all BLE GATT transactions from the
broker

gatt_result Y N Topic to send back BLE GATT results

modem N Y Topic to send request to the cellular modem

modem_result Y N Modem status

gps N Y Topic to send request to the GNSS (GPS)

gps_result Y N GPS publish

vehicle N y Topic to send request to vehicle (OBD) interface

vehicle_result Y n Vehicle publish

General syntax of topics

/<high level topic>/<gateway ID>/[<device address>/<sub-topic>]

Sub-topics are optional and linked to a measurement or status that can be published individually like a
temperature for instance. Device address is not used for the Scan and Filter topics. Sub-topics are optional
(see corresponding paragraph)

Gateways will subscribe only for their own ID

Payload encoding

Payload is JSON encoded and the content and structure are explained for each high-level topic.

Time stamps

Each message published by the gateway is time stamped. By default, Bluetooth related messages are
timestamped with the epoch time is seconds (floating point) while all other messages are time stamped
with the iso time format. The time stamping configuration will be introduced in a future release.

Solidsense topic

This topic is used to send global command to the gateway, in this version this limited, but will expand in
future releases

Keyword Type Value Action/signification

command M String status Query the status of active micro services in the
MQTT gateway

Solidsense_resp topic

This topic is used by the gateway to send responses to ‘solidsense’ commands. One message is
systematically sent once the gateway is connected to the broker. This is always the first message sent.

Keyword Type Value Action/signification

status M Array of pair Service/enable flag

Timestamp M String ISO time

The list of available services is:

1. Modem_gps: access to the modem and GPS (if installed)
2. Ble: Bluetooth Low Energy
3. Vehicle: Access to On Board Diagnostic data (Future)

2. Bluetooth Low Energy micro service

Scan topic

The role of the topic is to control the gateway behavior on the BLE interface. There is only a payload that
define how the gateway will listen for BLE device and report the results.

These parameters can also be set via configuration file to allow the BLE gateway to start operating as soon
as the system starts.

Keyword Type Value Action/signification

command M String start Start listening on BLE and reporting advertising from
the devices. The command is not time bound and
will remain in effect until a stop command is
received

 stop Stop listening for device advertisement. This is
occurring at the of the minimum listen period or
after timeout for periodic scan.
For indefinite scan started by “start” a scan_result is
sent upon the actual end of scan.

 time_scan Start listening for a time bound period if no timeout
is defined the default timeout in the configuration is
applied

The following fields are used to configure the scan what is sent at then of the scan (topic scan_result)

timeout O Float Scan time out in seconds (default=10s)

period O Float Repeat period for timed scan. If 0 or omitted, no
repeat. If superior to timeout then a pause time is
set between scans. If inferior or equal to scan
timeout, then scan restarts immediately

result O String none Nothing reported in timeout scan

 summary Publish a summary report (see scan_result) – this is
the default

 devices Publish an array of devices detected and selected by
filters during scan (see scan results)

gps O String position Add the GPS position to the scan result payload

The following define when and what will be published in the advertisement topic. Mode details to be
given in the advertisement topic payload description,

advertisement O String none No advertisement reported. Useful with time_scan
to have the devices reported only at the end

 min Minimum set of data (default)

 full Full set of data of the advertisement frame

sub_topics Boolean false No sub-topics (default)

 true Beacons or Service data as separated sub-topics (see
dedicated paragraph)

adv_interval O Float Minimum reporting interval of advertising in
seconds. Useful to avoid flooding the broker when
some devices are advertising at high rate. If omitted
each advertisement received will be pushed towards
the broker.

gps O String None Default – nothing reported

 Pos Only the position (lat, long) is reported

 Full Lat,long, heading, speed

Example JSON payload

{"command":"time_scan","timeout":20,"advertisement":"min","period":30,"sub_topics":true}

Start a periodic scan every 20 seconds for 20 seconds. Reports minimum info on advertisement and publish
sub-topics when corresponding data are sent by the devices

Filter topic

This topic allows to set filters to avoid having advertisement messages for beacons or sensors that are not
part of the application. Without filter, all BLE devices detected by the gateway are reported. Filters can be
set statically via configuration file. They are always passed as a JSON array.

Keyword Type Value Action/signification

type M String rssi Keep devices with a RSSI above or equal to the
minimum defined (negative integer)

 white_list Keep devices whose addresses are specified

 connectable Keep devices that have the connectable flag
(True or False) equal to the one specified

 starts_with Keep the devices whose name starts with the
string specified. Devices with no name are
ignored

 mfg_id_eq Keep the devices with the specifies
Manufactured ID (4 hex digits). Devices with no
manufacturer ID defined are ignored

 none Do not create a filter. Used to clear the filter list
and shall be the only item

min_rssi M Integer Negative
value
between -
30 and -99

Only for RSSI filter

match_string M String Only for the starts_with filter

addresses M Array of
string

 Only for the white_list filter

connectable_flag M Boolean Only for the connectable filter

mfg_id M Integer (4
hex digits)

 Only for the Manufacturer ID filter

To combine filters, just pass an element to the array. In that case a AND condition will be applied.

Example JSON payload

[{"type":"rssi","min_rssi":-80},{"type":"connectable","connectable_flag":true}]

Select the devices with a RSSI above -80 that are connectable.

Note on RSSI filter: as the RSSI value can fluctuate rapidly, the filter is re-evaluated for each advertisement packet
received and only when the threshold is reached a MQTT message is sent. However, if during the scan period the filter
is validated once, then the device is kept as valid device and sent in the scan result message. It becomes therefore
eligible for GATT transactions.

Scan result topic

This topic is published at the end of a timed scan when the Result keyword in the Scan parameters is not
None

If the Summary is selected, then the following JSON structure is sent

Keyword Type Value Action/signification

typestamp M Float Time is seconds from the Epoch of scan end

error M Integer Nonzero if an error occurred

dev_detected M Integer Total number detected during the scan

dev_selected M Integer Total number of devices selected after filtering

gps O Data
structure

 Present when the gps position option is set in
the scan directive

When the Devices option is selected the payload also includes an array of the following JSON structure for
each selected device

Keyword Type Value Action/signification

address M String MAC address of the device

name M String Local Name of the device, if no name is defined
then a zero-length string is sent

rssi M Integer Negative value corresponding to the Received
Signal Strength Indicator

Advertisement topic

This topic is published by the gateway each time an advertisement frame is received and meet the
following conditions:

a) The device is not filtered out
b) The advertisement frame is not within the advertisement interval set in the scan parameters

The device MAC address is part of the topic structure

/advertisement/<gateway ID>/<Device MAC>/

The payload structure has 2 options min or full. In the JSON structure table, the min fields are referred as
Mandatory while those from the Full option only as marked as full, with a possible Optionality indicator
meaning that the field is not present in the advertisement frame from the device

Keyword Type Value Action/signification

local_name M String Local Name of the device, if no name is
defined then a zero-length string is sent

timestamp M Float Time is seconds from the Epoch

rssi M Integer Negative value corresponding to the Received
Signal Strength Indicator

flags M Integer Bitwise indicator (1 byte)

connectable M Boolean True if the device is connectable

service_data F/M Integer Number of service data values. If nonzero,
then an array of service data value

service_data_array F/O Array

service_uuid M Integer 16 bits UUID of the service

type M Enum Value data type (see table)

value M Variable Value of the service data, if type is Raw, then
the raw hexadecimal byte string is sent

mfg_id F/O Integer Manufacturer ID (16bits)

mfg_data F/O Hex_string Hexadecimal string of the manufacturer data
less the Manufacturer ID

tx_power F/O Integer Value of Tx Power when sent from the device

 GATT topic

The GATT topic allows to interact with the GATT protocol with devices that are GATT server. The gateway is
always a GATT client.

Only the devices that have been selected during a scan can handle GATT request. If a request is sent to a
device that has not been seen (and selected) during a scan, the request is rejected.

The topic is structured the following way:

/gatt/<gateway ID>/<device MAC> and the description of the request is in the payload

Keyword Type Value Action/signification

command M String read Read a characteristic

 write Write a characteristic

 allow_notifications Allow receiving notifications for that
characteristic. If a value is present in the
request, it is written to the
characteristic just after allowing the
notifications for that device. (see details
below)

 discover Discover the device and send back the
list of services and characteristics

transac_id O Integer If set, that id will be present in the
corresponding GATT result frame(s)

service O UUID If present the request will look only for
the service with that UUID, if not
present this will raise an error an
nothing is returned. For devices with
many services this is speeding up the
transactions

properties O Boolean This parameter is used only for discover
and if true, the properties of the
characteristics will be reported as well.

bond O Boolean If True, then a bond (pair) request is
made after the connection

keep O Float If present and non-zero, keep the
connection open for the number of
seconds after a message has been
received from the device. A default
value is applied for allow_notifications

The following fields needs to be passed for read/write/allow_notifications
Single characteristic action or array are mutually exclusive

characteristic O UUID UUID of the Characteristic to be written
or read or to allow notifications upon.
UUID can be short form (4bytes
hexadecimal string) or long form.

type O Enum Type of the value to be written or
expected for read. If omitted Raw Hex
string is assumed

value O Value to be written

action_set O Array of tuple
(char,type) or
(char,type,value)

 For optimization, an array of the
following tuple can be passed and will

be processed in one connection to the
device

Note on allowing notifications.
To allow notifications, the process is writing the GATT Descriptor corresponding to the Characteristic.
If a type & value are indicated, then they are written to the Characteristic. To allow notifications on one
Characteristic and start notifications by writing to same or another Characteristic, this is supported by using
an action set. The first action shall contain on the Characteristic UUID of the one that shall send the
notifications and the second shall include the full set= Characteristic UUID, type and value.

Example JSON payload

{"command":"read","keep":10.0,"action_set": [
{"characteristic":"2A00","type":3},
{"characteristic": "2A19","type":1},
{"characteristic":"F000AA01-0451-4000-B000-000000000000","type":5}
]}
Perform reading 3 characteristics and keep the connection alive for 10 seconds

{"command":"discover","keep":10.0,"properties":true,"service":"1800"}

Discover the service 0x1800 (Generic Access), return the characteristics and properties and keep the
connection alive for 10 seconds

{"command":"allow_notifications","keep":10.0,"action_set": [
{"characteristic":"6e400003-b5a3-f393-e0a9-e50e24dcca9e","type":3},
{"characteristic": "6e400002-b5a3-f393-e0a9-e50e24dcca9e","type":3,"value":"LED_OFF"}

Trigger activity on Nordic serial service (6e400001-b5a3-f393-e0a9-e50e24dcca9e)
Allow notification on the first characteristic then write the string “LED_OFF” on the second.

GATT result topic

This topic is used by the gateway to publish the result of the corresponding GATT request

/gatt_result/<gateway ID>/<Device MAC>

The structure of the payload is depending from the nature of the request.

For read/write/notification

Keyword Type Value Action/signification

command M String Nature of the result
(read/write/notification/discover)

error M Integer If nonzero, then an error occurred

transac_id O Integer Present if a transaction ID was set for the
request

result O JSON
structure

 One of the following

For read/write/notify

characteristic M UUID For each valid write

For read and notify only

type M Enum

value M

For discover
An array of service descriptors is published with the GATT_Description tag.

Keyword Type Value Action/signification

service_uuid M UUID UUID of the service up to 128 bits

characteristics M Array of
UUID

 Set of characteristics UUID supported

If the properties parameter is set to true then characteristics are reported as a array of

uuid O UUID UUID of the characteristics

properties O String List of properties in a single string separated by
space

Advertisement sub-topics

In addition to the standard advertisement message and with the same rule the gateway can be configured
to publish a specific message for the service data or beacons (Eddystone or iBeacon)

/advertisement/<gateway ID>/<MAC ADDRESS>/<Service data name or uuid>
Or
/advertisement/<gateway ID>/<MAC ADDRESS>/eddystone
Or
/advertisement/<gateway ID>/<MAC ADDRESS>/ibeacon

The service data name is the one from the Bluetooth standard. The value field will be converted according
to standard. Not all service data Characteristics are implemented.

The payload for service data includes

Keyword Type Value Action/signification

timestamp M float Time in seconds of the Epoch

type M Enum Type of the value

value M Converted following Bluetooth standard

For Eddystone

Keyword Type Value Action/signification

timestamp M float Time in seconds of the Epoch

type M Int Type of Eddystone beacon

For UID Beacons

txpower M int

beacon_id M String HEX digits

For URL Beacons

txpower M Int

url M String

For other beacons

frame M String Hex digits

For iBeacon

Keyword Type Value Action/signification

timestamp M float Time in seconds of the Epoch

uuid M UUID UUID of the Beacon

majmin M String Major-Minor values

txpower M Int

To avoid duplicate the advertisement messages, the standard advertisement messages can be turned off in
the scan configuration command option.

General behavior and limitations

1. Scan and GATT operations are mutually exclusive. This is controlled by the gateway. All GATT
connections are terminated before a Scan start. GATT transaction requests are refused while a Scan
is running

2. In the current version (0.5), time_scan is more reliable and for permanent scanning it is preferred
to use periodic scan instead of start/stop.

3. By default, the service runs on hci0, but when several Bluetooth interface are existing this can be
changed in the configuration file. Currently only one interface can be managed at a given time.

3. Modem / GNSS Topics

Gps topic

The gps topic allows to query the system gps and publish the result as well as configure the MQTT client to
publish the GPS information regularly.
All responses are published on the gps_result/<gateway ID> topic

/gps/<gateway ID>

Keyword Type Value Action/signification

command M String status Get the GPS status

 start Start periodic publish. Only the period is
considered

 stop Stop periodic/streaming publish

 read Publish the position once

 stream Start publishing continuously following the
parameters

period O Float seconds Publishing period in seconds, default=60
seconds

fix_interval O Float seconds Maximum publish interval for fixed GPS

nofix_interval O Float seconds Publish interval when the GPS is not fixed

distance O Float meters Maximum distance between 2 publish for a
moving system. If the system moves slowly,
then the ‘fix_interval’ parameter is used for
publishing

Gps_result topic

Keyword Type Value Action/signification

command M String status The result is a status

 positiion The result is a position

 gps The result is a global gps error

timestamp M String ISO date and time of publish

error M Int 0 = No error
1= GPS not enabled in settings
3 = Communication error with GPS

result M JSON structure

Status result

Keyword Type Value Action/signification

fix M Boolean True if GPS is fixed

gps_time O String UTC time HH.MM.SS.mmmmm

nbsat O Int Number of visible satellites

date O String DD/MM/YY date of the last fix

sat_num O Int array Present only if nbsat > 0. Array of the
satellite’s id (sat number)

Position result

Keyword Type Value Action/signification

fix M Boolean True if GPS is fixed. If false, no other value is
transmitted

gps_time O String UTC time HH.MM.SS.mmmmm

latitude O Float Decimal degree negative => south

longitude O Float Decimal degree negative => east

laltitude O Float Altitude in meters

SOG O Float Speed on Ground in Knots (1.852km/h)

COG O Float Heading (Cape on Ground) in degree

Modem topic

The modem topic allows to query the status of the cellular modem. This can be done once or periodically.
All messages from the gateway are published on topic /modem_result/<gateway ID>

Keyword Type Value Action/signification

command M String status publish the modem status

 operators Publish the list of visible operators

 stop Stop periodic publish

period O Float seconds Publishing period in seconds. If 0 or omitted
the status is published only once

Modem_result topic

Keyword Type Value Action/signification

command M String status The result is a status

timestamp M String ISO date and time of publish

error M Int 0 = No error

result M JSON structure

Status result

Keyword Type Value Action/signification

Model M String Name of Modem model

IMEI M String

gps_on M Boolean True if the GPS is turned on

SIM_Status M String

IMSI O String Only in a SIM is READY

ICCID O String Only if a SIM is ready

Registered O Boolean True if attached

Network_reg O String NONE/HOME/ROAMING

PLMNID O Integer Only if attached

Network_name O String

Network O String

LAC O Integer Location area ID

CI O Integer Cell ID

rat O String Radio technology

band O String

Rssi O Integer -30 to -113 RSSI in dBm

Operators O String Operator view (one operator / line)

4. Vehicle On Board Diagnostic (OBD2) micro service (experimental)

This micro service connects to an OBD2 BLE dongle and publish on MQTT the data (OBD commands) that
are requested either via the command or via the parameter file.

Here is the list of the OBD commands supported: https://python-
obd.readthedocs.io/en/latest/Command%20Tables/. Only the Mode 1 commands are considered for the
reporting.

It should be noted that the available commands are vehicle dependent and operating mode dependent
(hybrid vehicle are sending a different set of commends while running on electricity versus fuel).

OBD dongle must be Bluetooth 4.0 compatible. There several existing on the market, but the best
performer is the Vgate Icar pro bluetooth 4.0. It is recommended to check that the dongle is visible with a
BLE scanner before starting the service.

Vehicle topic

/vehicle/<gateway-id>. Results are published via vehicle_result topic

Keyword Type Value Action/signification

command M String connect Request the connection to the
vehicle OBD system. Not needed if
the OBD service is in autoconnect
mode.

 read Start periodic publish

 stop Stop periodic publish

 status Publish the OBD service status

device O String This parameter is used for the
connect command only, itis either
the MAC address of the dongle of a
string used to detect it via BLE scan.
The string shall contain the first
characters used to detect the
dongle via its name

on_period O Integer Reporting period is seconds when
the engine is on (for read command
only)

https://python-obd.readthedocs.io/en/latest/Command%20Tables/
https://python-obd.readthedocs.io/en/latest/Command%20Tables/

off_period O Integer Reporting period is seconds when
the engine is off (for read
command only)

option O String min/vehicle_cmds/actual_cmds Publish the status of the service
(min) and optionally the list of the
commands that are supported by
the vehicle or the list of the
commands that are currently
configured to be reported

Vehicle_result topic

Section to be added

5. Configuration via Kura plugin

A configuration service in Kura (and accessible via Kapua) allows the configuration of the following
parameters:

1. Activation/Deactivation of the BLE/MQTT gateway
2. Device ID (default is hostname)
3. MQTT broker URL and port
4. MQTT broker credentials
5. MQTT secure connection

6. Configuration files

Global configuration

Here is the list of the configuration parameters
optional arguments:

 -h, --help show this help message and exit

file_settings:
 --settings SETTINGS A yaml file with argument parameters (see help for
 options). (default: None)
--autostart [true/false] If true, the autostart file will be executed when the MQTT client is starting (see
corresponding paragraph)

mqtt:
 --mqtt_hostname MQTT_HOSTNAME
 MQTT broker hostname. (default: None)
 --mqtt_username MQTT_USERNAME
 MQTT broker username. (default: None)
 --mqtt_password MQTT_PASSWORD
 MQTT broker password. (default: None)
 --mqtt_port MQTT_PORT

 MQTT broker port. (default: 8883)
 --mqtt_ca_certs MQTT_CA_CERTS
 A string path to the Certificate Authority certificate
 files that are to be treated as trusted by this
 client. (default: None)
 --mqtt_certfile MQTT_CERTFILE
 Strings pointing to the PEM encoded client
 certificate. (default: None)
 --mqtt_keyfile MQTT_KEYFILE
 Strings pointing to the PEM encoded client private
 keys respectively. (default: None)
 --mqtt_cert_reqs MQTT_CERT_REQS
 Defines the certificate requirements that the client
 imposes on the broker. (default:
 VerifyMode.CERT_REQUIRED)
 --mqtt_tls_version MQTT_TLS_VERSION
 Specifies the version of the SSL / TLS protocol to be
 used. (default: _SSLMethod.PROTOCOL_TLSv1_2)
 --mqtt_ciphers MQTT_CIPHERS
 A string specifying which encryption ciphers are
 allowable for this connection. (default: None)
 --mqtt_persist_session
 When False the broker will buffer session packets
 between reconnection. (default: False)
 --mqtt_force_unsecure
 When True the broker will skip the TLS handshake.
 (default: False)
 --mqtt_allow_untrusted
 When true the client will skip the TLS check.
 (default: False)
 --mqtt_timestamp MQTT_TIMESTAMP
 Format of the time stap to be used in messages
 published by the gatreway (default: iso)

gateway:
 --gateway_id GATEWAY_ID
 Id of the gateway. It must be unique on same broker.
 (default: None)

ble:
 --ble True if a BLE scanner/GATT client to be attached to
 the MQTT client (default: False)
--ble_interface List of all hci interfaces managed by the service. The current version supports only one
interface at a at time.

Other services:
 --modem_gps True if a Modem/GPS is to be attached to the MQTT
 client (default: False)
 --modem_gps_addr MODEM_GPS_ADDR
 Address and port of the gps micro service if not the
 default one (default: 127.0.0.1:20231)
 --obd_device service to be used to connect OBD! Device address or Name
 (default: None)
 --obd_addr OBD_ADDR Address and port of the OBD micro service if not the

 default one (default: 127.0.0.1:20232)

By default, the gateway is started by systemd with only the –settings option and the configuration file is
/data/solidsense/mqtt/solidsense-mqtt.service.cfg
When using the Kura plugin, it is not recommended to modify directly that file as it is overwritten by Kura.

MQTT client configuration

Bluetooth configuration

For Bluetooth there is also a general parameters file in a JSON file: parameters.json in
/data/solidsense/ble_gateway. This file is read by the service upon start only and include the following
fields:
Interface: name of the interface to be used hci0/hc1/hci2
Notif_MTU: maximum length of a notification message
Trace: level of tracing (info by default) info/debug/error
Debug_bluez: allow low level tracing in the bluez interface and stack. Only for troubleshooting
Max_connect: maximum number of simultaneous GATT connection

The parameters.json file is automatically generated by the Provisioning system and any modification may
lead to a nonfunctional system.

Modem configuration

There is an internal configuraytion file the modem and gps (parameters.json) in
/data/solidsense/modem_gps. This file is read by the service upon start only and include the following
fields:
Address: listening IP address for the service
Port: 20231
Modem_ctrl modem control port /dev/ttyUSB2
Nmea_tty: nmea port
Trace: error/info/debug default info
PIN: PIN of the SIM card if any
Roaming Allow roaming
OperatorsDB name of the file with all operator names/PLMNID
Start_gps: start the GPS
Timer: period for checking the modem by the service
Nb_retry Number of periods without attachment before a reset is performed
Start_gps_service If False, the service is not started, only the modem initialization sequence is
perfomed

The parameters.json file is automatically generated by the Provisioning system and any modification
(except the PIN) may lead to a nonfunctional system.

Autostart file

The autostart file allows to simulate MQTT messages that the gateway is receiving to start operating. The
file is located in /data/solidsense/mqtt/autostart

The structure of the file is simple and reuse the payload structure described in this document.
General syntax:
<topic>:<corresponding MQTT payload>
comment
Example:
initial BLE scan topic
scan:{"command":"time_scan","timeout":30,"period":40,"advertisement":"none","result":"summary","gps
":"position"}
initial GPS topic
gps:{“command”:”stream”,”fix_interval”:10.0,”nofix_interval”:300.0,”distance”:100}

Vehicle OBD configuration

The configuration resides in /data/solidsense/vehicle with 2 files:

parameter.json take includes the following parameters:
- trace: level of service traces (error/info/debug)
- address: registration address of the service (local 127.0.0.1 or global 0.0.0.0)
- port: IP port 20232 by default
- connect_retry: number of retries of the connection to the OBD dongle before falling into error
- Interface: Bluetooth interface (hci0)
- obd_trace: level of trace of the OBD layer (error/info/debug)
- autoconnect: true/false. If true, the service automatically performs a connection to the OBD

system using the MAC specified in the parameters. If false, then an explicit connect via MQTT
needs to be performed before accessing the data.

- MAC: MAC address of the OBD dongle

std_obd_cmd.json contains the list of OBD commands that are used by default if no more
restrictive list is passed as parameter

The configuration is read only upon service start

