
Configuring and testing the Wirepas gateway

software

Prerequisite and installation

From the version 0.9 on, the Wirepas gateway software is installed in the base image.From

version 1.0 on (Solidsense-1.0-2020032700) and for orders with the Wirepas option, no

installation step is required.

Purpose and features

The SolidSense Wirepas service exposes the full gateway API from Wirepas compliant to

the Wirepas reference design 1.3.0. For detailed information see the Wirepas gateway API

documentation. From version 2.0 on, the gateway implements Wirepas reference design 1.4.

Practically that means that the gateway is directly compatible with all Wirepas cloud features,

mainly the WNT for configuration and control of the Wirepas network and WPE for asset

tracking features.

This is not preventing to develop additional applications on the gateway itself either by directly

interfacing the sink services or by having messages routed to the local MQTT broker and writing

a client (Python is preferred) that will process the payload locally.

Mapping of Wirepas sinks with physical ports

The Wirepas are connected to the CPU via UART. Here is the device mapping

Gateway type Sink 1 Sink 2

N6 Indoor /dev/ttymxc1 /dev/ttymxc2

N6 Outdoor /dev/ttymxc1 /dev/ttymxc2

N6 Industrial /dev/ttymxc1 /dev/ttymxc2

N8 Compact /dev/ttymxc3 N/A

Specific installation steps

For gateway in version 0.9 that do not have their Wirepas sink factory flashed (Wirepas

licensees) the procedure is here: Flashing or Re-flashing Wirepas sinks on SolidSense gateway

(V0.9 and up) .

https://github.com/wirepas/backend-apis/blob/master/gateway_to_backend/README.md
https://github.com/wirepas/backend-apis/blob/master/gateway_to_backend/README.md
file:///C:/wiki/spaces/developer/pages/263684108
file:///C:/wiki/spaces/developer/pages/263684108

If the Wirepas configuration services do not appear on the Kura interface, then the following step

have to be applied:

1. Download the Wirepas sample configuration file. This can be done either on your PC or

directly from the gateway.

2. Copy the file in /data/solidsense/config/SolidSense-conf-custom.yml. That file can be

edited first so you can directly enter your parameters. Otherwise you can always program

them via Kura/Kapua

3. Restart the gateway for reconfiguration (being su) /opt/SolidSense/bin/restart –config.

Warning all network parameters will fall back to factory default.

Exemple using ssh directly on the gateway connected to Internet

Dowloading the file

assuming pwd = /data/solidsense (home dir of solidsense user)

For N6:

> curl -o config/SolidSense-conf-custom.yml

https://images.solidsense.io/SolidSense/custom_yml/SolidSense-conf-custom-

wirepas-for-N6.yml

For N8:

> curl -o config/SolidSense-conf-custom.yml

https://images.solidsense.io/SolidSense/custom_yml/SolidSense-conf-custom-

wirepas-for-N8.yml

> sudo su

su# /opt/SolidSense/bin/restart --config

N6 : Wirepas configuration in Yaml

Custom template file for SolidSense provisioning

Gateway N6 indoor / outdoor

Kapua + Wirepas

Wirepas configuration with 2 sinks enabled

==

This file drives the following configuration

Network

========

Default

Wirepas

=======

sink1 enable configured via the file

sink2 enable configured via the file

transport1 interactive

All configurations via KURA

Copyright SolidSense-Connect 2021-2022

https://images.solidsense.io/SolidSense/config/SolidSense-conf-custom.yml
https://images.solidsense.io/SolidSense/custom_yml/SolidSense-conf-custom-wirepas-for-N6.yml
https://images.solidsense.io/SolidSense/custom_yml/SolidSense-conf-custom-wirepas-for-N6.yml
https://images.solidsense.io/SolidSense/custom_yml/SolidSense-conf-custom-wirepas-for-N8.yml
https://images.solidsense.io/SolidSense/custom_yml/SolidSense-conf-custom-wirepas-for-N8.yml

**

* WARNING *

* There is no consistency/ vaidity checks for parameters *

* Changing any parameter will require test before *

* Any Field application *

**

state is used for activable services (pure data services don't need one)

disabled the service will not be configured and and started

auto the service is configured but the start and activation is

done by another process or context dependant

interactive the service configuration is to be done via Kura

active the service is configured and activared during provisioning

override (true by default) replace the default service definition,

false, combine both definitions

Global variable definition

gateway:

 snapshot_0: snapshot_0-full.xml #this is the template snapshot do not

change it unless full test

 Network-Id: 10450204 # to be replaced by actual one

 Channel: 10 # to be replaced by actual one

Services definition

services:

MQTT connection to Kapua

- service:

 type: KuraService

 name: KapuaMQTT

 state: active

 override: false

 properties:

 topic.context.account-name: YOUR_ACCOUNT_NAME_ON_KAPUA

 username: YOUR_USERNAMe

 password: YOUR_PASSWORD

 client-id: $SERIAL-NUMBER

Wirepas services => enable only if Wirepas is to be used

And if the right firmware has been flashed in the Nordic chips (sink)

Variables are here for reference and example and are not used in

interactive mode

- service:

 type: WirepasSink

 name: sink1

 state: active

 parameters:

 configuration: WirepasSinkConfigurationService

 plugin: WirepasConfigurationService.dp

 plugin_name: WirepasConfigurationService

 system: wirepasSink1

 port: ttymxc1 # physical port

 start: true

 variables:

 NETWORK_ID: $Network-Id

 NETWORK_CHANNEL: $Channel

 ADDRESS: 16001 # to be finally porogrammed via WNT

 properties:

 sinkAddress: $ADDRESS

 networkChannel: $NETWORK_CHANNEL

 networkAddress: $NETWORK_ID

 sinkName: $service_name

- service:

 type: WirepasSink

 name: sink2

 state: active

 parameters:

 configuration: WirepasSinkConfigurationService

 plugin: WirepasConfigurationService.dp

 plugin_name: WirepasConfigurationService

 system: wirepasSink2

 port: ttymxc2

 start: true

 variables:

 NETWORK_ID: $Network-Id

 NETWORK_CHANNEL: $Channel

 ADDRESS: 160002

 properties:

 sinkAddress: $ADDRESS

 networkChannel: $NETWORK_CHANNEL

 networkAddress: $NETWORK_ID

 sinkName: $service_name

- service:

 type: WirepasTransport

 name: wirepas-cloud

 state: interactive

 parameters:

 configuration: WirepasConfigurationService

 plugin: WirepasConfigurationService.dp

 plugin_name: WirepasConfigurationService

 system: wirepasTransport1

 prefix: transportA

 # customID:

 variables:

 ENABLE: false

 SECURE: True

 ADDRESS: YOUR_BROKER_URL # e.g: vps.sterwen-technology.eu

 PORT: 8883

 USER: YOUR_BROKER_USER #e.g: solidsense

 PASSWORD: YOUR_BROKER_PASSWD #e.g: aiPh2eim

 properties:

 enabled: $ENABLE

 secured: $SECURE

 address: $ADDRESS

 user: $USER

 port: $PORT

 passwd: $PASSWORD

 maxpacket: 0

 maxdelay: 0

 options: ""

prevent SolidSense MQTT to start

- service:

 type: MQTTService

 name: mqtt1

 override: false

 properties:

 enabled: false

 address: TO_BE_CONFIGURED

Configuring the sink service with Kura

Open the Kura web interface and go the Wirepas Sink Configuration menu

On this page you need to configure the Wirepas network parameter for each sink: The Network

ID (in decimal) and channel number. After applying the changes, the wirepas sink services are

updated with the new parameters. Each sink is to be configured separately and the Web interface

does not record the configuration for each sink. Only the visible parameters are stored.

Warning: the value displayed are the one stored in the Kura database and do not reflect

the actual values in the sinks

Configuring the sink service with Kura SolidSense V2.0

In V2.0 major improvements have been added to the Sink Service:

 Values displayed are the actual ones

 More features can be configured

 The number of sinks displayed reflect the gateway configuration

Configuring the Wirepas Data transport

The Wirepas transport application allows the communication between external and local

applications via MQTT or gRPC protocols. By default no communication channel is configured.

Up to 3 communication channels, working simultaneously, can be configured via the Wirepas

Data Configuration screen in Kura:

1. Main MQTT transport

2. Optional MQTT transport

3. Local micro service on gRPC

Each MQTT transport has the following configuration items

 Enable for operational

 Enable transport secure. communication to be performed over TLS

 transport persistence mode: if true set the MQTT Clean Session parameter to False. No

message loss.

 MQTT Broker URL

 MQTT Broker username

 MQTT Broker password

 Maximum buffered packets and maximum delay without publish: these parameters

control the “black hole” mechanism. If they are non zero the “black hole” feature is

enabled, meaning that when the MQTT connection is cut if one of the limit is

crossed htne the sink cost is raise to maximum, so the gateway is not taking any

messages from the Wirepas network

 Expert mode is used to pass any parameter not defined with a field on the page. Syntax is

YAML like,with one parameter per line.

Note: if a specific certificate is needed for TLS communication with the MQTT broker, then that

certificate must be configured on the gateway. The procedure is explained here

After applying the changes all enabled data transport are started or restarted and the gateway

should be operational.

Micro-service gRPC configuration

If local processing of the Wirepas data or specific transport is to be implemented, the local gRPC

Wirepas server can be started. The only option is to use either a global listening address,

meaning the server is visible from outside if the firewall is open on that port, or a local address,

meaning that the service is only available for local processes.

Default port: 9883

Proto file and examples in /opt/SolidSense/Wirepas-Install-1.2/wirepas-gw/grpc

Using Kapua for remote configuration

All the configuration can also be done using Kapua, using the remote device configuration

service that is briefly described in: Using Eclipse Kapua to supervise and configure SolidSense

gateways | Managing-devices

Wirepas transport configuration parameters

Here below the list of all parameters. many of them can be configured directly via the

wirepasTransport plugin in Kura, the one that are directly present can be set in the “expert mode”

text field using a “Yaml” syntax (parameter: value).

https://developer.solid-run.com/knowledge-base/gateway-secure-communication-and-vpn/
https://solidrun.atlassian.net/wiki/spaces/developer/pages/264142858/Using+Eclipse+Kapua+to+supervise+and+configure+SolidSense+gateways#Managing-devices
https://solidrun.atlassian.net/wiki/spaces/developer/pages/264142858/Using+Eclipse+Kapua+to+supervise+and+configure+SolidSense+gateways#Managing-devices

The wirepas transport services are using the parameters located in /data/solidsense/wirepas

 Main MQTT (wirepasTransport1) in wirepasTransport1.service.cfg

 Secondary (wirepasTransport2) in wirepasTransport2.service.cfg

These file are directly written by the Kura configuration plugin, so any manual edit will be lost if

the plugin is used.

Wirepas Gateway Transport service arguments

optional arguments:

 -h, --help show this help message and exit

main:

 --version show program's version number and exit

file_settings:

 --settings SETTINGS A yaml file with argument parameters (see help for

 options). (default: None)

mqtt:

 --mqtt_hostname MQTT_HOSTNAME

 MQTT broker hostname. (default: None)

 --mqtt_username MQTT_USERNAME

 MQTT broker username. (default: None)

 --mqtt_password MQTT_PASSWORD

 MQTT broker password. (default: None)

 --mqtt_port MQTT_PORT

 MQTT broker port. (default: 8883)

 --mqtt_ca_certs MQTT_CA_CERTS

 A string path to the Certificate Authority

certificate

 files that are to be treated as trusted by this

 client. (default: None)

 --mqtt_certfile MQTT_CERTFILE

 Strings pointing to the PEM encoded client

 certificate. (default: None)

 --mqtt_keyfile MQTT_KEYFILE

 Strings pointing to the PEM encoded client private

 keys respectively. (default: None)

 --mqtt_cert_reqs {CERT_REQUIRED,CERT_OPTIONAL,CERT_NONE}

 Defines the certificate requirements that the client

 imposes on the broker. (default: CERT_REQUIRED)

 --mqtt_tls_version

{PROTOCOL_TLS,PROTOCOL_TLS_CLIENT,PROTOCOL_TLS_SERVER,PROTOCOL_TLSv1,PROTOCOL

_TLSv1_1,PROTOCOL_TLSv1_2}

 Specifies the version of the SSL / TLS protocol to be

 used. (default: PROTOCOL_TLSv1_2)

 --mqtt_ciphers MQTT_CIPHERS

 A string specifying which encryption ciphers are

 allowable for this connection. (default: None)

 --mqtt_persist_session [MQTT_PERSIST_SESSION]

 When True the broker will buffer session packets

 between reconnection. (default: False)

 --mqtt_force_unsecure [MQTT_FORCE_UNSECURE]

 When True the broker will skip the TLS handshake.

 (default: False)

 --mqtt_allow_untrusted [MQTT_ALLOW_UNTRUSTED]

 When true the client will skip the certificate name

 check. (default: False)

 --mqtt_reconnect_delay MQTT_RECONNECT_DELAY

 Delay in seconds to try to reconnect when connection

 tobroker is lost (0 to try forever) (default: 0)

gateway:

 --gateway_id GATEWAY_ID

 Id of the gateway. It must be unique on same broker.

 (default: None)

 -fp [FULL_PYTHON], --full_python [FULL_PYTHON]

 Do not use C extension for optimization. (default:

 False)

 -gm GATEWAY_MODEL, --gateway_model GATEWAY_MODEL

 Model name of the gateway. (default: None)

 -gv GATEWAY_VERSION, --gateway_version GATEWAY_VERSION

 Version of the gateway. (default: None)

filtering:

 -iepf IGNORED_ENDPOINTS_FILTER, --ignored_endpoints_filter

IGNORED_ENDPOINTS_FILTER

 Destination endpoints list to ignore (not published).

 (default: None)

 -wepf WHITENED_ENDPOINTS_FILTER, --whitened_endpoints_filter

WHITENED_ENDPOINTS_FILTER

 Destination endpoints list to whiten (no payload

 content, only size). (default: None)

buffering:

 --buffering_max_buffered_packets BUFFERING_MAX_BUFFERED_PACKETS

 Maximum number of messages to buffer before rising

 sink cost (0 will disable feature) (default: 0)

 --buffering_max_delay_without_publish BUFFERING_MAX_DELAY_WITHOUT_PUBLISH

 Maximum time to wait in seconds without any

successful

 publish with packet queued before rising sink cost (0

 will disable feature) (default: 0)

 --buffering_minimal_sink_cost BUFFERING_MINIMAL_SINK_COST

 Minimal sink cost for a sink on this gateway. Can be

 used to minimize traffic on a gateway, but it will

 reduce maximum number of hops for this gateway

 (default: 0)

 --buffering_monitor_period BUFFERING_MONITOR_PERIOD

 Delay in seconds between two logs of the

 network/buffering state (0 will disable feature)

 (default: 0)

Checking the status of the data transport

The feature is available only in 2.0

Testing and troubleshooting the Wirepas configuration

Sink services

The sink service ensure the communication with the Wirepas software running on the Nordic

chips. This a systemd service that is automatically started when configured. There are 2 services:

1. wirepasSink1 for the sink#1 (/dev/ttymxc1)

2. wirepasSink2 for the sink#2 (/dev/ttymxc2)

After the Sink(s) is (are) configured the gateway is connected to the Sink and as soon the data

transport is configured the data are sent to the MQTT broker(s)

Simple check of sink configuration

From the shell (or Kura/Kapua) you can enter

sinkctl

This will display the sink configuration as follows

Sink sink1 Network: 5063237 Channel: 38 Address: 3268760 Stack Started

Sink sink2 Network: 5063237 Channel: 38 Address: 3268761 Stack Started

The sinkctl command can also start and stop the Wirepas stack by adding the ‘start’ or ‘stop’

option to the command:

stop all the sinks

sinkctl stop

start all sinks

sinkctl start

Firmware verification

If the above commands do not give any results and in case you are unsure about the firmware

flashed on the Nordic chips you can perform the following commands

check sink1 firmware

sudo wp-get-fw-version /dev/ttymxc1

check sink2 firmware

sudo wp-get-fw-version /dev/ttymxc2

Correct response with a Wirepas firmware

[SERIAL][9:19:22] D:Custom bitrate set: 125000

[SERIAL][9:19:22] D:Serial opened

[wpc_int][9:19:22] I:WPC initialized

Wirepas Firmware version: 4.0.50.0

Wirepas Network config: 176377:11259375:2

Incorrect response with no Wirepas firmware flashed

[SERIAL][9:19:22] D:Custom bitrate set: 125000

[SERIAL][9:19:22] D:Serial opened

[wpc_int][9:19:22] I:WPC initialized

Wirepas Firmware version: 4.0.50.0

Wirepas Network config: 176377:11259375:2

Advanced troubleshooting with systemd

To check that the service is communicating correctly with the sink

systemctl status wirepasSink1

systemctl status wirepasSink2

If there is an error reported here, that means that there no communication between the sink

service and the sink. This can be due to non-Wirepas software installed on the sink, wrong sink

software configuration (baud rate or pinout) or hardware problem. Here a correct output:

solidsense@BS184300123:~$ systemctl status wirepasSink1

* wirepasSink1.service - Wirepas sink manager for sink connected to

/dev/ttymxc1

 Loaded: loaded (/etc/systemd/system/wirepasSink1.service; enabled; vendor

preset: enabled)

 Active: active (running) since Sun 2019-08-04 19:28:02 UTC; 18h ago

 Main PID: 940 (sinkService)

 CGroup: /system.slice/wirepasSink1.service

 `-940 /data/solidsense/wirepas/sinkService -b 125000 -p

/dev/ttymxc1 -i 1

solidsense@BS184300123:~$ sudo journalctl -u wirepasSink1

-- Logs begin at Sun 2019-08-04 19:27:56 UTC, end at Thu 2019-08-08 13:37:12

UTC. --

Aug 04 19:28:02 BS184300123 systemd[1]: Started Wirepas sink manager for sink

connected to /dev/ttymxc1.

Please Note

The Wirepas sinks are managed by 2 linux services: wirepasSink1 wirepasSink2

If one of the Sink is not flashed with Wirepas or not used you can disable the service by using

the following command:

sudo systemctl disable wirepasSink<n> (n being 1 or 2)

Not disabling the service on a non Wirepas interface is generating a lot of errors in the logs,

better to disable if the interface is not flashed or even not in use.

To enable in a later stage or if any mistake has been made:

sudo systemctl enable wirepasSink<n>

The service is started when configured using the Kura configuration service.

Data transport services

There are many more reasons to have problems with the data transport as it supports all

communication parameters from the Wirepas network and towards the cloud applications.

The best way to verify that the transport service is running correctly is by looking at the logs

sudo journalctl -u wirepasTransport<1/2>

for a continuous output

sudo journalctl -u wirepasTransport<1/2> -f

If there is no traces of packets from the Wirepas network, check the sink service configuration

For any other error, including “deadlock errors”, this is due to communication problems with the

broker.

Managing TLS certificates for a secure connection towards the MQTT broker

In this version, the TLS certificate is not anymore hard coded and if a secure connection is to be

implemented. By default the TLS handshake shall work with the broker and no specific

configuration is needed. However, if some specific secure communication scheme have to be

implemented, the corresponding certificate (.pem file) needs to be properly installed on the

gateway.For that operation, it is necessary to open a ssh session on the gateway, there is for now

no interactive procedure.

Obtaining the SSL certificate

Either you have it and it is stored on the gateway for instance in $HOME directory and named

mqttbroker.pem (the file name is is given as example and any valid name can be used) or you

need to retrieve it directly from the broker using the following command line. For all scripts in

this article it is assumed that the user is logged as the default user.

echo -n | openssl s_client -connect <MQTT Broker>:8883 | sed -ne '/-BEGIN

CERTIFICATE-/,/-END CERTIFICATE-/p' > ~/mqttbroker.pem

If you have the certificate on your PC you can transfer it on the gateway by your preferred mean:

scp/sftp/USB stick

Adding the certificate to the list of managed certificates

sudo cp ~/mqttbroker.pem /etc/ssl/certs

sudo cat ~/mqttbroker.pem >> /etc/ssl/certs/ca-certificates.crt

From that point , if a secure connection is to be setup to the broker on 8883, the TLS will be

activated with the right certificate.

